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TRANSONIC FLOW PAST A WEDGE PROFILE WITH DETACHED BOW WAVE!
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SUMDMARY

A theoretical study has been made of the aerodynamic charac-
icristics at zero angle of atiack of a thin, doubly symmetrical
double-wedge profile in the range of supersonic flight speed in
which the bow ware is defached. The analysis utilizes the
equations of the transonic small-disturbance theory and involres
no assumptions beyond those implicit in this theory. The
mixed flow about the front half of the profile ig calculaied by
relazation solution of @ boundary-value problem for the transonic
small-disturbance equation in the hodograph plane (i.c., the
Tricomi equation). The methods follow established lines except
for the somewhat novel treatment of the boundary conditions
along the shock polar and sonic line. The purely supersonic
flow about the rear of the profile is found by means of the method
of characteristics specialized to the transonic small-disturbance
theory. Complete calculations were made for four ralues of the
transonic similarity parameter. These were found sufficient
to bridge the gap between the previous results of Quderley and
Yoshihara at ¢ Mach number of 1 and the results which are
readily obtained when the bow ware ig attached and the flow is
completely supersonic.

The results of the study provide the following information as a
function of the transonic similarity parameter: (1) shape and
location of bow ware and sonie line, (2) chordwise distribution
of Mach number and pressure, and (3) integrated pressure drag
aof front wedge, rear wedge, and complete profile. The results
shaw that the local Mach number at a ficed point on a profile
of given thickness ratio increases ‘monotfonically as the free-
stream Mack number increases from 1. In agreement with
other recent findings, this increase is at first very slight for a
considerable increment away from the sonic flight condition,
The coefficient of pressure drag for the complete profile varies
+ relatively slightly near the sonie flight speed, decreases rapidly
in the ricinity of bow-ware attachment, and then decreases at a
progressively less rapid rate in the range of purely supersonic

Jlow.
INTRODUCTION

At supersonic flight speeds, the flow field about a wedge of
infinite span is characterized at zero angle of attack by a
symmetrical, two-dimensional shock wave. This wave,
which forms either on or in front of the apex of the wedge, is
1 8upersedes NACA TN 2330, ““Transonic Flow Past & Wedge Profile With Deiached Bow
Wave—General Analytical Method and Final Caleulated Results” by Walter G. Vincenti
and Cleo B. Wagoner, 1051, and NACA TN 2588, “Trensonic Flow Past 8 Wedge Profile

With Detached Bow Wave—Detafls of Analysis’ by Walter G. Vincentf and Cleo B. Wago-
ner, 1951.

celled the bow wave in recognition of its analogy to the
surface wave which forms at the bow of a moving ship. As
is well known, the shape of the bow wave and the nature of
the flow about the wedge vary depending upon the apex angle
of the wedge and the Mach number of the free stream.
Consider, for simplicity, the case of a wedge of fixed angle.
It will be assumed that the wedge is perfectly sharp and that
the effects of viscosity are negligible. It will also be assumed
that the wedge is of finite length in the streamwise direction.
Under these circumstances, three essentially different regimes
of flow are possible, depending on the Mach number of the
free stream:

1. Attached bow wave with purely supersonic How:
Above a certain free-stream Mach number, the value of
which depends on the magnitude of the wedge angle, the bow
wave is attached to the apex of the wedge, and the local flow
at all points downstream of the wave is supersonic. Under
these conditions, the velocity at the surface of the wedge is
uniform, and the bow wave is straight out to its point of
intersection with the first Mach wave from the downstream
end of the wedge. This regime of purely supersonic flow
was first studied by Prandtl and Meyer as long ago as 1908
(reference 1) and is now to be found analyzed in any standard
text on gas dynamics. )

2. Attached bow wave with mixed subsonic and supersonic
flow: As the free-stream Alach number is reduced in the
purely supersonic regime, a condition is eventually reached
at which the local velocity downstream of the straight por-
tion of the bow wave is exactly sonic. With further reduc-
tion in Mach number, the flow in the vicinity of the wedge
becomes subsonie, and the entire fundamentsl nature of the
flow field is altered. For a small range of free-stream Mach |
number, the bow wave remains attached to the apex, but the
velovity along the surface of the wedge is now nonuniform.
The wave itself, though still inclined toward the rear at all
points, is now curved starting from its beginning at the apex.
The rather complex sequence of events in this particular
regime of mixed subsonic and supersonic flow has been
clarified by Guderley (reference 2), but no speeifie calcula-
tions have been made. Since the regime prevails over only
& narrow range of Mach number, the lack of quantitative
information is not of serious consequence.

3. Detached bow wave: At a freestream Aach number
glightly below that which gives sonic fiow behind the bow
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wave, a limiting condition is reached below which an attached
wave is no longer possible. At lower Mach numbers, there-
fore, the wave detaches from the apex and stands in the
stream forward of the wedge. In this regime of flow, which
prevails down to a Maeh number of 1, the subsonic flow over

the surface of the wedge has a stagnation point at-the apex.

The element of the curved bow wave directly ahead of the
apex is now normal to the direction of the free stream.
This regime of mixed flow may occupy a considerable interval
of Mach number in the currently important range of transonic
flight speeds. Because of difficulties inherent in the mathe-
matics of the problem, however, quantitative theoretical
results free of special assumptions are generally lacking.

Perhaps the first caleulations of the flow about a finite
wedge with detached bow wave were made by Maccoll and
Codd in England between 1938 and 1942 (reference 3) and
were reported by Maccoll at the 6th International Congress
of Applied Mechanics in Paris in 1946 (reference 4). In this
initial work, the computations were carried out in the plane
of physical coordinates—or, more precisely, in a plane of
distorted physical coordinates, TFor reasons which will
appear later, a direet solution was not possible with this
approach, so that recourse was had to & method of successive
approximations. The successive approximations were ob-
tained by numerical integration of the partial differential
equations of fluid motion in the subsonic portion of the flow
field. By this means Maccoll and Codd were able to obtain
results for the mixed flow about bodies of various shape.
The calculations for the wedge with a detached wave were
confined, however, to the single case of a free-stream A ach
number of 1.5 and a total wedge angle of 40°.

An alternative method of analysis, which eliminates the
need for successive approximations, has been deseribed
independently by Frankl (1945) in Russia and by Guderley
(1947) in this country (references 5 and 2, respectively).
In this approach, the problem of the wedge with detached
wave is formulated as a boundary-value problem with the
velocity components as the independent variables. Using
this hodograph method, Frankl was able to prove that the
solution of the detached-wave problem is unique. (This
had been tacitly assumed by Maccoll and Codd.) Guderley,
following a similar approach, showed how the hodograph
problem can be simplified by restriction to small disturbances
about the sonic velocity. These ‘developments have been
subsequently reviewed in nonmathematical form by Buse-
: mann {reference 6). More recently (1949), Guderley and
Yoshihara, using the small-disturbance theory, have obtained
a quanfitative solution for the finite wedge at a free-stream
Mach number of 1 (reference 7). In this special limiting
case, the bow wave disappears at infinity upstream, which
facilitates the mathematical analysis. The corresponding
boundary-value problem in the hodograph plane was solved
analytically by Guderley and Yophibara with the aid of
Fourier analysis and a harmonic analyzer. For free-stream
Mach numbers greater than 1, a comparable analytical
solution of the boundary-value problem is not yet available.
Such a solution would appear, indeed, to present serious
mathematical difficulties, even in the relatively simple
small-disturbance theory.
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The work described in the present report is a logical
extension and application of the hodograph method of
Guderley and Frankl. To circumvent the lack of an analyt-
ical solution at Mach numbers greater than 1, it was proposed
in the present study to solve the boundary-value problem
by means of numerical techniques. In the application of
numerical methods, the present work has much in common
with the investigations of Maccoll and Codd. The use of the
hodograph approach, however, eliminates the nced for
successive approximations and brings about other improve-
ments in ease and rigor. Furthermore, through use of the
similarity principles inherent in the smali-disturbance
theory, general results applicable torany thin wedge can be
obtained on the basis of & relatively small number of specific
calculations. In the present work, these results are used, in
particular, to study the pressure distribution and drag of a
complete, doubly symmetrical double-wedge profile in the
range of flight Mach numbers from unity upwards. The
report is divided inte two major parts. Part I contains a
nonmathematical description of the theoretical problem and
8 detailed discussion of the final results. This portion of the
report can be read without reference to part II, which
explains the details of the mathematical procedures.

Since the completion of the present caleulations, experi-
mental studies of the wedge problem have been reported by
Bryson in reference 8 and by Griffith in reference §. Certain
of the results which appear in Bryson’s report were also
given in preliminary form by Liepmann and Bryson in
reference 10. .

NOTATION

PRIMARY SYMBOLS

Ca critical velocity (i. e., velgeity at which the

velocity of flow and the velocity of sound are

equal) '
¢ airfoil chord
e drag coefficient (Sl_"”-_z‘_’»'_ per unlt span span)

g ;
v
s generalized drag coefficient { (')EE,—E;—)-I,?,—] cd}
Ch pressure coefficient (P—;—p—")
¢

~ 143
Cy generalized pressure coefficient { @%—513%‘] ( ’,}
e,fihk length of irregular lattice inteérvals relative to

that of basic interval

f(%) function defining shape of profile

FQ), G functions defined along sonic line in hodograph
(See equation (23).)

I integral defined by equation (56)

Ji (t=1,2,3) component integrals (See cquation
(50) et seq.) :

K,L functions of ¢, f, and 7, (See equation (44).)

Eiks nwnerical constants (See equations (24) and
(32}).)

M Mach number

P _ static pressure

q dynamiec pressure (Z pM’)
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S(@) function defined by equation (41)
¢ airfoil thickness

v local speed of flow

2y Cartesian coordinates

)i ordinate function {[(‘Y +1) (é)]m(%)}

absolute value of # at left-hand limit of lattice

ratio of specific heats (1.4 for air)

basic lattice interval

hodograph varieble defined by equation (18)

loesl inclination of flow relative to z axis

variable of integration (See equation (25).)

half-angle of wedge

ordinates of upgoing and downgoing character-
isties at 7=0

hodograph variable

DDA R

&

]

[e}]
L
[y

>

(See equation (23).)

. A2—
speed function {W)(f_/;—)lm}

Jioe
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. . e Az2—1

A transonic similarity parameter { = }

¢ yP [+ D@er”

p fuid density

¥ stream function

Ye value of ¢ at the point E (See equation (33).)
SUBSCRIPTS

0 conditions in free stream

0,1,2, ete. value at a preseribed lattice point

* conditions at critical speed

f front portion of airfoil

r rear portion of airfoil

M,=1 value at free-stream Mach number of 1

£,=0 value at £,=0
SUPERSCRIPT

) quantity in normalized form (See equation

(26).)

' PART I—GENERAL METHOD AND FINAL RESULTS

GENERAL ANALYTICAL METHOD
DESCRIPTION OF FLOW FIELD \

[t is convenient to begin by examining the nature of the
flow field which exists around a doubly symmetrical, double-
wedge profile when the bow wave is detached. The com-
plete double-wedge profile is considered here since the
determination of the characteristics of this profile is the final
object of the present work. The description and results
relative to the flow over the forward half of this profile, how-
ever, are applicable, within minor limitations, to the ow over
any finite wedge which terminates in a sharp convex corner.
It will be assumed in all that follows that the fluid surround-
ing the profile is a perfect gas and that the effects of viscosity
and thermsl conductivity are negligible.

Under these idealized conditions, the fow about & non-
lifting double-wedge profile with & detached bow wave is
qualitatively as shown in figure 1. (Since the flow is sym-
metrical about the chord line, only the upper half of the field
is shown.) As indicated. the subsonic flow which exists

Shock waves
——-— Sanic line

-——=---— Expansion Mach
Compression lines

FisurE L.—Flow about double-wedge profile with detached bow wave.

behind the detached wave is confined to a limited region

bounded by the wave, the sonic line, and the forward half of

the profile. The fluid which enters this region is decelerated
272483 54— 49

discontinuously from supersonic to subsonic veloecity in
passing through the detached shock wave. Downstream of
the shock wave, the fluid is accelerated continuously, first to
the speed of sound at the sonic line and then to supersonic
speed beyond this line. As previously mentioned, the de-
tached wave begins normel to the free stream at the axis of
symmetry (point A) and curves progressively downstream.
Far from the sirfoil, the slope of the wave ténds asymptot-
ically to the slope of a freestream Mach line. Since the
detached wave is curved, the flow behind the wave is, of
course, nonuniform. The sonic line, which forms the down-
stream boundary of the subsonic region, begins at the ridge
of the profile (point B) and extends to some point E on the
shock wave. Since the flow in the subsonie region is non-
uniform, the sonic line is curved. As can be demonstrated,
however, it must leave the ridge normal to the forward surface
of the profile.

Directly to the rear of the sonic line at the ridge, a super-
sonic expansion fan originates. This expansion fan tends, in
the immediate vicinity of the ridge, toward a simple Prandtl-
Meyer flow, in which the sonic line and the elementary
Mach waves would be straight lines emanating radislly from
the corner. Since the sonic line in the present flow is curved,
however, the Mach waves of the expansion fan must be
curved as well, the curvature being in the forward direction.
By virtue of this forward curvature, certain of the expansion
waves meet the sonic line, while others meet the outer portion
of the bow wave. One particular expansion wave BDE
meets both the sonic line and the bow wave at their common
point E. This particular wave may be termed the “separat-
ing wave,” since it separates the expansion waves into two
classes: those which reach the sonic line and those which do
not. It is apparent that any small disturbance introduced
into the expansion fan forward of the separating wave BDE
will travel along a Mach wave to a point on the sonic line.
From there it will spread throughout the subsonic region,
thereby influencing the shape of the sonic line, and, hence,
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of the expansion fan itself. The entire subsonic region and
the limited portion BDECB of the adjacent supersonic region
are thus interdependent and must be regarded for analytical
purposes as a single, bounded transonic zone. A small dis-
turbance originating in the purely supersonic region to the

rear of the separating wave BDE cennot reach the sonic line.

and can have no effect upon the flow in the aforementioned
transonic zone,

The supersonic flow over the rear of the airfoil is directly
influenced by conditions in the transonic part of the field.
Analysis indicates that the elementary expansion waves
which reach the sonic line do not terminate there but are
reflected as elementary compression waves.” These waves
are again reflected as compression waves at the solid surface
of the airfoil. After this last reflection, the elementary com-
pression waves coalesce to form an oblique shock wave which
begins at the ridge. On thin sections this shock wave is very
weak and may be regarded, for all practical purposes, as a
distributed compression. Rearward of the oblique wave
from the ridge, the flow continues with supersoniec velocity
to the trailing edge, where there is a second oblique shock
wave of the type familiar from purely supersonic airfoil
problems.

METHOD OF ANALYSIS

To handle the present problem analytically, the flow must
first be determined in the transonic zone bounded by the bow
wave, the airfoil profile, and the separating Mach wave, As
in all trensonic problems, such determination involves the
solution of a partial differential equation of mixed type,
that is, one which is elliptic in the subsonic region and hyper-
bolic in the adjoining supersonic region. The solution of an
equation of this type is troublesome at best. In the present
problem, however, additional difficulties arise. First of all,
the differential equation, beside being of the mixed type, is
also nonlinear, Second, the location of two of the boundaries
of the transonic zone—the bow wave and the separating
Mach wave—is not known & priori but must be determined
as part of the solution. Third, the flow in the transonic zone,
having passed through the curved bow wave, is necessarily
rotational.

The foregoing difficulties seriously complicate any attempt
to solve the problem in the physical plane, even when nu-
merical techniques are employed. The nonlinearity of the
differential equation, though it does not preclude a solution
by numerical mefhods, does greatly increase the amount of
numerical work over that which is ordinarily encountered
with a linear equation. The lack of knowledge concerning
the location of the boundaries of the transonic zone can be
overcome by resorting to a method of successive approxima-
tions, as in the work of Maccoll and Codd (references 3 and
4). Such a proccdure, however, entails considerably more
labor than would be required if the boundaries were known
at the outset.? The difficulties due to the fluid rotation can

? Macooll and Codd simplify both the fundamental problem and the caleulative procedure
by taking the sonle line, Instead of the separating Mach wave, as the downstream limit of
the region of calenlation. This edimivates the need for considering the mathematical singu-
lerity which exists bebind the sonic line at the ridge, but requires in return that some condi-
tion be specified along the sonio line itsell, This requirement Is mef by assoming that the
streamlines and the sonfo line are mutually perpendiculer and that the sonfc Une may be
represented by a snitable parabola. The error Introduced by these special assumptions is
not known, but would probably be considerable for thin wedges at low supersonic speeds.
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be disposed of by simply assuming that the rotation is neg
ligible. The inaccuracies introduced by this assumption are
undoubtedly small, except for thick wedges moving at rela-
tively high Mach numbers. Even with the rotation elimi-
nated from the equations, however, the basic nonlinearity
still remains.

In addition to the theoretical difficulties just discussed,
there exists a practical complieation which is important from
the computational point of view. This complication arises
from the fact that any rigorous solution of the problem must
be a function of three independent variables: the free-stream
Mach number M,, the thickness ratio t/e, and the ratio of
specific heats . Thus, if a rigorous theory is used, a con-
siderable number of cases must be calculated to obtain an
adequate cross section of numerical results.

As in the work of Guderley and Frankl (references 2 and
5), the first step in the solution of the problem is to trans-
form the flow from the physical plane to the hodograph
plane. This affords an immediate simplification by provid-
ing a completely fixed set of boundaries for the transonic
zone. The bow wave, in particular, goes over into a known
shock polar, while the separating Mach wave transforms
into one of the fixed epicycloids which make up the charac-
teristic net in the hodograph. The differential equation in
the hodograph variables is still of the mixed type, as would
be expected in view of the transonie nature of the original
problem. The cquation is also still nonlinear if the fluid
rotation is included in the analysis. If the rotation is arbi-
trarily neglected, however, the differential equation in the
hodograph becomes linear, in contrast to the previous situa-
tion in the phvsical coordinates® Since the fundamentals
of the problem are unchanged by the transformation to the
hodograph, the complication still remains that any solution
must be & funetion of the three variables mentioned above.

The second major step in the analysis is to introduce the
assumption of small disturbances. Specifically, it is assumed
thet the entire flow field, including the free stream, differs
only slightly from a parallel flow at the critical speed ay.!
As is well known, this small-disturbance approximation
brings about important simplifications in the mathematics
of the problem. First, the terms representing fluid rotation
turn out to be of the same order as other terms which are
neglected in the analysis. This means that the use of the
linear differential equation in the hodograph is strictly
justified within the framework of the approximate theory.
Second, the differential equation itself, though still of mixed
type, tekes on an especially simple form (the Tricomi
equation). This equation bas been the subject of consid-

$ Frankl’s uniqueness proof, mentioned in the introduction, Is based on the linear equa-
tion and thus fgnores the fluld rotation. It seema unlikely, however, that the inclusion of
rotatlional effects would alter the concluslons of the study.

+ Ag discassed in several recent papers (see, for example, references 11 and 13), the theory
can glso be formulated in terms of differences relutive to the freo-stream spood 1, This
latter, less restrictive formulation reveals clearly the relationship which exists bofween the
transonie amall-disturbance theory and the familiar Iinear theory of subsonio or suporsanic
flow. Asshown by Sprelter (see page 9 of reference 13), an e, analysis will yleld results
1demtical to those of & V, analyals provided the similarity narameter and pressure oocfliclont
In the former case are taken as in equations (1) end (7} below, If this procedure is followed,
the results of the o, analysis may even be expected to tond toward thoss of lincar theory as
the free-streem Mach number inoreases or decreases from 1. (An analytical example of Just
this behavior has been giver by Bryson In appendix A of reference 8.) It appoars, thervlore,
that the a, formulation, when suitably used, gives results of widor theorstical validity than
would be anticipated on the basls of its awn rather restrictive undorlying assumption.
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erable mathemartical study, beginning with the work of
Tricomi (reference 13). Third, the solution of the problem
becomes a function of & single parameter which involves
gll three of the individual variables previously discussed.
This is the so-called transenic similarity parameter £
which can be written
Mr—1
SRR @

This last simplification greatly reduces the amount of com-
putation required fo investigate the effects of changes in
the individual variables. _

It may be remarked in passing that the assumption of
small disturbances will obviously be violated near the stag-
nation point which exists at the leading edge of the profile.
A similar situation is, of course, encountered in the classical
theory of thin airfoils at purely subsonic speeds. There
the inconsistency is known to be of little practical conse-
quence except in the immediate vicinity of the leading edge
itself. It is to be expected that the same result will prevail
in the locally subsonic flow encountered here.

A detailed account of the formulation and solution of
the boundary-value problem in the hodograph plane is given
in part IT of the present report. Suffice it here to sey that
the boundaries and boundary conditions are taken essenti-
ally as given by Guderley (reference 2), except that the
supersonic portion of the transonic zone is replaced by an
equivalent integral relation which must be satisfed every-
where along the sonic line. By this modification, which
involves no approximations beyond those already employed,
the mathematical problem is reduced to that of solving a
purely elliptic differential equation. This was found
essential to the numerical solution of the problem. The
numerical solution itself is carried out in more or less standard
fashion by means of finite-difference equations and relaxation
techniques.®

Onee the solution for the front half of the airfoil is deter-
mined in the hodograph plane, the trensformation back to
the physical plane is a simple matter. The purely super-
sonic flow over the rear half is then constructed in the
physical plane by means of the method of characteristics as
specialized to the small-disturbance theory.

It will be noted that the solution of the problem in the
present manner, though laborious because of the use of
numerical techniques, requires no special assumptions
beyond those implicit in the differential equations. In
particular, no restrictions are necessary with regsrd to the
geometric shape of the shock wave or sonie line.

Although the transonic small-disturbance theory was
originally formulated for the solution of problems of mixed
flow, it is not confined in its applications to problems in
which such flow actually occurs. The theory may still be
applied—in simple analytical form, in fact—in the com-
pletely supersonic regime, where the bow wave is attached
and the region of subsonic flow has disappeared. This is
accomplished by first reducing the complete equations for
the oblique shock wave and the Prandtl-Meyer expansion to

9 &g iy often the case with relaxation work, the numerical ealculations made considerable
demands upon the skill and perseverance of the computer. Special credit is due Mrs. Helen
Mendel for the suceessful completion of this phase of the study.
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appropriate forms involving the transonic similarity param-
eter (see, for example, the work of Tsien and Baron, reference
14) and then applying these results as in the standard shock-
expansion method. This procedure is applicable to the
present airfoil when £,22'%=1.260, this being the condition,
to the order of accuracy of the small-disturbance theory, for
an attached wave with not less than sonic flow on the down-
stream side.® (Consistent with the remarks in the intro-
duction, attachment of the wave itself takes place at the
somewhat lower value of £=3/(4)¥*=1.191.)

RESULTS AND DISCUSSION

Calculations have been carried out, according to the
methods described in the preceding section, for four values
of the similarity parameter £,; namely, 0.484, 0.703, 0.921,
and 1.058. These four cases were found sufficient to bridge
the gap between the findings of Guderley and Yoshihara at
AM,=1 (£,=0) and the analytical results which are aveailable
when the bow wave is attached and the flow is everywhere
supersonic (£=1.260). The complete results are given in
figures 2 through 8 and are described in the following para-

graphs.
BOW WAVE AND SONIC LINE
The dimensionless ordinates /¢ of any chosen line which
intersects the streamlines are given in the transonic small-
disturbance theory by an equation of the form-

r+ 1 e ()=7 (5 &) @

where ¥ is a function of the dimensionless abscissa zfc and
the similarity parameter £,. (For derivation of the transonic
similarity rules on which these and later equations are based,
see references 11, 12, 15, 16, or 17.) The calculated shape
of the bow wave and sonic line is shown in figure 2 in the
form prescribed by the foregoing equation.

To facilitate the diseussion, it will sometimes be con-
venient to look upon a generalized plot, such as that of
figure 2, as applying to fixed values of t/c and y¥. From this
point of wview, a deerease toward zere in the similarity
parameter ean be thought of 2s simply a deerease toward 1 in
the freestream Mach number. In figure 2 an appreciation
of physical proportions is further achieved by dividing ¥
by the numerical factor (0.24)¥% and plotting the results to
equal vertical and horizontal scales. Thus, for the specific con-
ditions of {/e=0.10 and y=1.4 (air), the vertical scele reads
directly in values of y/e, and the figure provides as it stands a
geometrically correct representation of the flow field. The
corresponding values of 1f, are given by the upper figure
along the shock wave. (The sonie veloeity will first appear
in the flow field about the 10-percent-thick section at a
free-stream Mach number of approximately 1.219 (£=1.260).
Detachment of the shock wave will oceur at the slightly
lower Mach number of 1.208 (£=1.191).)

§ In the shock-expansinn method It ls assumed that the pressure fs uniform on eactr straight-
line segment of the airfoll surface. Becsuse of interaction effects between the shock wave
from the bow and the expapsion fan from the ridge, this condltion Is not completely fulfflled
until the flow behind the bow wave Is somewhat greater than sonie, thet s, until the val,
off, issomewhat uhove 1.260. Inconformity with nsual practice, this complication Is Ignored
in the present work since It Is known to have only a negligible influence upon the computed
chargcteristics of the airfall.
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Fioure 2.—8hape of bow wave and sonie line.

The dashed outline of the airfoil which appears in figure 2
is fo be regarded as a diagrammatic representation only.
In a similarity plot of this kind, the profile must be regarded,
properly spesking, as coinciding with the horizontal axis.
(For a more complete discussion of this point see page 29 of
reference 18.) The dashed profile in figure 2 is mc,luded only
as an aid in orienting the reader.

It will be noted that in each case in figure 2 the shock
wave and sonic line as calculated do not meet at a common
point. This discrepancy appears in the course of the trans-
formation from the hodograph to the physical plane; it is
primarily a reflection of the fact that a solution of the
system of finite-difference equations in the hodograph is not
an exact solution of the boundary-value problem for the
originel partial differential equation. This so-called “trun-
cation error’”’ can, in principle, be made as small as desired
by progressively decreasing the mesh size in the hodograph.
In the present work this procedure has been carried in each
case to the point where increased refinement caused only an
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insignificant change in the pressure distribution or over-all
drag. Because of the nature of the hodograph transforma-
tion, however, the details of the accompanying flow field are
subject to somewhat greater error, particularly with regard
to the over-all height of the subsonic region. As implied by
the size of the gap between the shock wave and sonic line,
the absolute magnitude of this error increases as £, decreases,
though the percentage error in terms of the height of the
subsonic region is nearly constant. The actual magnitude
of the truncation error is in all cases certainly less than the
errors caused by the basic theoretical assumption of small
disturbances,

It is seen in figure 2 that in each case the calculated sonie
line begins at the midchord point at right angles to the
horizontal axis. This result is consistent, to the accuracy
of the small-disturbance theory, with the known fact that
the sonic line given by any rigorous treatment would leave
the ridge normal to the forward surface of the profile. As it
leaves the airfoil, the sonic line curves at first rather sharply
toward the rear. The initial curvature can, in fact, be
shown to be infinite. A short distance from the airfoil the
rearward trend is reversed, with the result that the sonic
line has a predominately forward curvature over most of its
length. The flow across most of the sonic line in the present
problem is apparently analogous lo the accelerating tran-
sonic flow through a continuous-walled, converging-diverg-
ing nozzle, where the sonic line isknown to have & consistently
forward curvature. The rearward curvature which is
evident close to the airfoil is only a Iocalized effect caused
by the presence of the sharp corner at the ridge.

The rapidity with which the subsonic region expands
vertically with reduction in the free-stream Mach number
is striking. For the airfoil of 10-percent thickness ratio, for
example, the semiheight of the subsonic region in figure 1
grows from approximately 2.4 chord lengths at A,=1.187
to approximately 18.3 chord lengths at A,=1.090. The
height of the subsonic region (and the distance of the shock
wave ahead of the airfoil) would, of course, tend to infinity
as the Mach number approached still closer to unity. These
results imply that the tip effects are likely to be considerable
on finite-span wings at free-stream Mach numbers close to 1.

According to the transonic similarity rules, the speed of
flow at any point in the generalized flow field is determined
by the local value of & dimensionless speed function £ which
can be written

Ar—1
ShrnEer ®

where M is the local value of the Mach number. (The tran-
sonic similarity parameter is thus merely the special value

.of g1e speed function which applies at points in the free

strcam.) As a matier of interest, contours of constant
speed function £ in the region between the shock wave and
sonic line have been determined for the case of £&=0.821.
These results are shown in figure 3. By virtue of equation
(), the contours of constant £ may be interpreted, for fixed
values of #/¢ and v, as contours of constant Mach number.
They may also be regarded, to the order of accuracy of the
transonic small-disturbance theory, as contours of constant
velocity, pressure, density, and temperature. It will be
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noted that certain of the contours, in common with the
sonic line, fail to meet the shock wave. This is again a
reflection of errors inherent in the finite-difference solution.
I 1
§=0
35 ! A

2
5 -1

[r+ee]?

— &,= 0.921 =

3.0 } f I 0
For #/c = Q.0 and y=14,
M, =1164

—

/
/ [

n
[$)]
-

-.184

n
O

'(pu)(f/c)]"3 (%)

|~ 024

.

]
— ]

Y t4
(0.24)/3
n
T

J
.0 o \ '!
AN
I N LU/
~.73%, \\ /

AL
F1rURR 3.—Contours of constant speed function for £.=0.921.

CHORDWISE DISTRIBUTION OF MACH NUMBER AND PRESSURE

At points on the surface of the airfoil, the speed function
£ is related to the similarity parameter £, by an equation of
the form

e=¢(%6) @)

The calculated values of ¢ at the surface of the airfoil are
shown in figure 4 for the four values of the similarity param-
eter. Also included in the figure are results for £,=0 as
obtained from the previously cited work of Guderley and
Yoshihara (reference 7). In line with the earlier interpreta-
tion, the curves of figure 4 may be looked upon here eos
representing the chordwise distribution of Mach number for
fixed values of t/e and v but different values of 11,.
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All of the distribution curves of figure 4 have the same
general shape. In each case, for example, the calculated
Mach number at the leading edge has an infinite negative
value. This physieally impossible result, which is charac-
teristic of small-disturbance theories in general, represents
the stagnation condition which must prevail in the real sub-
sonic flow at the leading edge. Rearward from the leading
edge, the Mach number in each case rises more or less repidly
to the prescribed value of unity on the forward side of the
ridge. Turning the corner at the ridge, the flow expands
discontinuously to a supersonic Mach number which, for
given values of {fc and v, is independent of conditions in the
free stream. Over the rear half of the sairfoil, the Mach
number decreases slightly as a result of the compression
waves reflected from the sonic line (see fig. 1}. In general,
for an airfoil of fixed thickness ratio, increasing the free-
stream Mach number from unity brings about an increase
in the average local Mach number over both the front and
rear surfaces of the profile.

The nature of this latter variation is illustrated more clearly
in figure 5, which is a cross plot of £ versus £, for the 25- and
75-percent chordwise stations. The short vertical lines
labeled S at £=1.260 denote the point at which the tran-
sonic small-disturbance theory predicts an attached bow
wave with uniform sonic flow over the forward half of the
profile. Results at this point and at all points to the right
of S can be determined analytically as explained earlier in
the text. It is apparent from figure 5 that the values given
by the present numerical work satisfactorily bridge the gap
which would otherwise exist between the analytical results
at either side.
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As can be seen from figure 5, the change in local conditions
with change in free-siream Mach number is slight for a
considerable distance away from a free-stream Mach num-
ber of 1. The curves of this figure have, in fatt, been drawn
with & horizontel tangent at £,=0. This is in accord with
Guderley’s recent analytical study of two-dimensional flows
with a free-stream Mach number close to 1 (reference 19).
Guderley’s results indicate that just at the sonie flight speed
the local Mach number at any point on an arbitrary two-
dimensional profile is stationary with respect to variations
in the free-stream Mach number, thaf is,

a3
M) atom— (5)

In terms of the present variables (see equations (1) and (3))
this requires that
(%),.~° ®)
dEa £o=0

The same results were anticipated by Liepmann and Bryson
on the basis of the physical considerations presented in
reference 10.

The pressure coefficient C,=(p—p,)/¢, is given in the
transonic small-disturbance theory by the equation

1 1/8

At points on the surface of the airfoil, equation (4) applies
for £ so that equation (7) there has the form

@D 5 (2
;YW 0,,—0,, (E’ Ea) (8)

where C’ is a generalized pressure coeﬂiclent which depends
only on zfe and £,. The velues of O' for the double-wedge
section, as calculated by means of equation (7), are shown in
figure 6. The curves here are essentially the same as the
curves of £ in figure 4, except that they are inverted and
shifted vertically by an amount which differs for each curve.
Tt can be seen from this figure that as the free-stream Mach

'—2(5 - Ea) (7)
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pumber increases above 1 the pressure distribution tends
toward the well-known supersonic type of distribution in
which the pressure is uniform over each surface of the profile.

PRESSURE DBAG

Let the ordinates of a general profile be represented by the
equation y/c=(t/¢) f(zfc). With the aid of equation (8),
the pressure-drag coefficient can then be written in the
generalized form

(—T(?-;;)ls#c‘,=§ 6', (% E,) F (%) d (%)=5¢(Eo) )]

where f (zfc) is the derivative of f(z/c) with respect to its
argument and the integration is performed around the profile
in the clockwise direction. In the specific case of the double-
wedge profile, the ordinates of the front wedge are given by
yle=% (f/c)(x/c). The portion of the generalized drag
coefficient contributed by this half of the profile is thus

S ama 842

where, because of symmetry, the integration need be per-
formed over only the upper surface. For the rear wedge
the ordinates are given by yfe=d4 (/c)(1—z/c), and the
corresponding portion of the generalized drag coefficient is

g T "f ,a(2)

/e “@epr Ctp=—

(10a)

(10b)
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In the present study the integrals in equations (10) were
evaluated by mechanical integration of the pressure-distribu-
tion curves of figure 6. In the case of &, a small, analyti-
cally determined allowance was included fﬂ or the eﬁ'ect of the
singularity at the leading edge. The final results are shown
in figure 7. The drag coefficient of the complete airfoil was
obtained, of course, by adding the drag coefficients for the
front and rear wedges.

The results of figure 7 indicate that at a flight Mach num-
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condition and then also decreases toward zero. The details
of the maximum are, however, not elear from Trilling’s work.

As shown by Liepmann and Bryson (reference 10), the
slope which the curves of figure 7 should have at the vertical
axis can be determined from the previous results regarding
the behavior of the local Mach number &t the sonic flight
condition. For example, taking the derivative of equation
(10a) with respeet to &, one can write for the front wedge

ber of 1 approximately two-thirds of the drag of the section dedf) _ f”z ac, ) ( ) (11)
is contributed by the rear wedge. As the Mach number d& /gm0 o \dE /e=o
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increases from 1, the drag coefficient of this portion of the
profile decreases continuously. At the same time, the drag
coefficient of the front wedge first increases until it is con-
siderably above that of the rear half, after which it also
decreases. At a sufficiently Ligh free-stream Mach number,
the drag coefficient of each half of the airfoil is essentially the
same. As a result of the difference in the drag variation of
the two halves, the drag coefficient of the complete profile
shows little variation for some distance above a Mach num-
ber of 1. As the shock wave attaches to the leading edge,
however, and the local flow becomes everywhere supersonic,
the total drag coefficient drops markedly. Far into the
supersonic regime the variation is again less rapid.

The curve for the front wedge in figure 7 has been continued
into the subsonic range of flight speeds (£<C0) by the
anelytical work of Cole (reference 20). The continued curve
decreases monotonically toward zero as the value of & is
reduced. The continuation of the curve for the rear wedge
has been accomplished by Trilling (reference 21). This
curve apparenty reaches a maximum at some subsonic flight

It follows from equation {7) that

‘fié:: -t [(dfa tpm0 :I

and hence, by virtue of equation (6), that

T, =

Substitution of this value into equation (11) leads to the
final result

dz‘,,r —
A&/t =0

This is the result given previously by Liepmann and Bryson.
The analogous relation for the rear wedge, obtained by
proceeding from equation (10b), is

(d Ca,

(12a)

(12b)
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The curves for the front and rear wedges in figure 7 thus
have equal but opposite slopes where they meet the vertical
axis. It follows that the curve for the complete profile has
zero slope at the same point, that is, (d84/d&,)e,-0.=0.

1t will be noted that figure 7 also includes curves obtained
from the standard linear theory. That such results can be
included in a transonic similarity plot of this kind has been
shown by several writers (see, for example, reference 22).
In the present case, the drag coefficient of the complete
profile as given by the linear theory is (see page 154 of
reference 23)

tfc)’

o
This can be written in terms of the transonic similarity
variables as

Gy 4
G e

The front and rear of the profile each contribute half of the
drag in the linear theory, so that

2
8g, =Ly, = g7

The dashed curves of figure 7 have been drawn in accordance
with these relations.

For the rear half of the airfoil, the two theories illustrated
in figure 7 are in reasonable agreement down to well within
the regime of transonic flow. This result might not be
anticipated, since the linear theory is based on the assumption
of supersonic flow throughout the flow field. It is probably
associated in some way with the fact that the local flow
over the entire rear half of the airfoil remains supersonic
(and nearly uniform) even after the flow over the front has
become subsonic. For the front wedge, the results of the
two theories diverge markedly even before the fransonic
regime is reached. The same is true of the curves for the
complete profile. Within the transonic regime itself, the
two theories give radically different results for both the front
wedge and the complete profile. Near §=0 the two sets
of results for the rear wedge are also completely different.
This basic disagreement is a refiection of the fact that the
linear theory is inherently incapable of dealing with problems
involving mixed flows.

To afford some ides of numerical magnitudes for a repre-
sentative specific case, the curves of figure 7 have been
replotted in figure 8 for {/c=0.0787 and y=1.4. This value
of ¢/e is the value which would apply to a complete profile
having the same half-angle at the leading edge (4%°) as the
thinnest wedge fested by Liepmann and Bryson (references
8 and 10)." Also included in the present figure are partial
curves calculated according to the standard shock-expansion
method (see, for example, reference 24), This method,
which is based on a stepwise application of the complete
equations for an oblique shock wave and & Prandtl-Meyer

7 In an earlier account of this work (see footnote 1}, 8 multiplicity of curves was drawn for
each part of the profile on the basis of the trangsonic small-disturbance theory. This was done
by using expregsions for the sim{larity parameter and pressure coeficient different from those

of equations (1) and (7). In view of the subsequent developments outlined in footnote 4,
such cumplioations now appear to be of lessened significance.
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expansion, applies only in the range in which the shock-wave
equations predict an attached wave with not less than sonic
velocity over the front half of the profile. Except for a
smell error in the drag of the rear half near the low end of
this range (see footnote 6), the shock-expansion method
provides the exact inviscid solution for the double-wedge
profile.

Additional information of an exact nature can be included
in figure 8 with reference to the rate of change of the drag
coefficient at the sonic flight speed. As previously implied,
the analytical results of Guderley regarding flows with &
free-stream Mach number close to 1 (reference 19) are not
limited by the assumptions of the transonic small-disturbance
theory. (The same can also be said of the physical argu-
ments given by Liepmann and Bryson in reference 10.)
This means that the result of equation (5)—namely, that
(@M/dM,) p, ., =0—may be regarded as an exact result
and may be used to obtain exart »<lations for the slope of the
drag curves at a free-stream Mach number of 1 (see appendix
for details). The final equations, which are the only items
of importance here, are as follows:

For the front wedge

dcd_, 4 ? 2
(m Moy F1 (E)—-'y_.ﬁ (C4))seems  (168)
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For the rear wedge

d ‘-“f) 4 [t\ 2
diM,) =1 y+1 (E) 1 (¢4)s01 (16D}
For the complete profile
“deg _ 2
(‘EE_ M‘_I__,Y_i__ 1 (ci)ifa-l (160)

The short slanted dashes which appear on the line 1f,=1
in the various parts of figure 8 have been drawn in accord-
ance with these relations. An exact curve for the fransonic
range would cross the line Af,=1 with a slope conforming
with these dashes and fair smoothly into the shock-expansion
results at some point slightly to the right of the pertinent
point S. The ordinate at Af,=1 would not, of course, be
necessarily identical with that computed from the small-
disturbance theory.

It is of interest to compare equations (16) with the
corresponding equations given by the small-disturbance
theory. These can be found by differentiation of equations
(10) and application of the results of equations (12). The
final expressions are as follows:

For the front wedge

dCdf‘ 4 t L4
) =1 (5) (172)
For the rear wedge
dCd,. 4 ¢ -
‘3_.1_-{;).&:..-!— Tyt (?) (17b)

For the complete profile
i dC¢

) st~ (17¢)
Equations (17a) and (17b) are the same as equations (16a)
and (16b) insofar as the terms proportional to ¢/¢ are con-
cerned. These terms are a result (see appendix) of a rele-
tive variation between the static pressure at the sonic point
and the reference static pressure in the free stream. They
have the same magnitude but opposite sign for the front
and rear wedges. They thus do not appear in the final
equations for the complete profile. Equations (17) differ
from the exact equations (16) by their failure in every case
to include a negative term proportional to the dragcoefficient.
This term appears in equations (16) as an effect (see appen-
dix) of a relative variation between the dynamic pressures
in the free stream and at the sonic point. This effect is of a
higher order than those which the small-disturbance theory
includes. Because of the presence of this higher order effect,
the exact theoretical curve for the complete profile, in par-

7283 —B4—-W
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ticular, must have 2 slightly negative slope at & free-stream
Mach number of 1.8

CONCLUDING REMARKS

The results of the present numerical analysis show the
salient features of the two-dimensional inviscid flow over a
thin, doubly symmetrical, double-wedge profile in the range
of supersonic flight speeds in which the bow wave is detached.
The most important findings can be summarized as follows:

1. The vertical extent of the subsonic region behind the
detached wave is large even when the wave is only a relatively
small distance removed from the leading edge. This implies
that the tip effects may be large on finite-span wings when
the bow wave is deteched.

2. The local Mach number 3 at a point on the surface of
the profile increases monotonically as the free-stream Mach
number 1f, increases from 1. The increase in S is at first
very slight for & considerable increment away from the
sonic flight condition. This confirms previous findings that
the local Mach number has a stationary value at =1
and shows that these findings provide a good working ap-
proximation even et Mach numbers a short distance removed
from 1. Yhen considered in terms of the pressure coefficient
on the surface of the airfoil, the results show how the transonic
pressure distribution tends, as the flight Mach number in-
creases, toward the purely supersonic type of distribution
known to exist in the upper portion of the speed range.

3. As the free-stream Mach number increases from 1, the
pressure-drag coefficient of the front wedge increases until it
reaches & maximum at a flight speed somewhat below that
for which the bow wave attaches to the leading edge. It
then decreases, the rate of the decrease being at first rapid
in the vicinity of bow-wave attachment and then less rapid
in the range of purely supersonic flow. The drag coefficient
of the rear wedge decreases continuously over the entire
supersonic range of flight speeds. Because of the differences
in the drag variation for the two halves, the dreg coefficient
of the complete profile varies relatively slightly near the
sonic flight speed, decreases rapidly in the vicinity of bow-
wave attachment, and then decreases at & progressively less
rapid rate in the range of purely supersonic flow.

In applying the foregoing results, it should be remembered
that the theory assumes an inviscid fluid and an airfoil of
small thickness and infinite span. Since the effects of finite
span, in particular, will be to reduce the drag at transonic
speeds, the present results should be looked upon as providing
an approximate upper bound for the inviscid pressure drag

of a three-dimensional wing. In fact, until some knowledge

is obtained regarding the effects of finite span and fluid
viscosity, it is doubtful if more accurate two-dimensional,
inviscid ealculations for thin double-wedge profiles would be
worth the trouble from an engineering point of view. In _
the present state of theoretical development, knowledge of
these effects will probably have to come from experiment.

s This fact was orfginally pointed out to the zuthors by Gottfried Guderley.
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PART II—DETAILS OF ANALYSIS

The present part of the report is concerned with the details
of the numerical analysis. The plan of this part is briefly as
follows: In the first scction, the basic problem of the finite
wedge with detached bow wave is stated as a boundary-value
problem for the transonic small-disturbance equation in the
hodograph plane. Except for the introduction of a boundary
condition along the sonic line to replace conditions previously
prescribed in the supersonic portion of the hodograph, this
material follows the lines established by Frankl (reference 5)
and Guderley (reference 2). It is recounted here primarily
for the sake of completeness. In the second section, the

boundary-value problem in the hodograph is reduced to a sys- .

tem of finite-difference equations, the solution of which is then
obtained by relaxation techniques. This portion of the work,
which constitutes the main contribution of the present part
of the report, is discussed in some detsil, since it is anticipated
that the methods and equations which are presented will be
useful in the solution of other problems involving detached
shock waves. The third seetion describes the transformation
of the hodograph solution for the finite wedge back into the
physical plane. The fourth section is concerned with the
characteristics construction used to obtain the purely super-
sonic flow over the rear of the double-wedge profile, and the
final section contains a few remarks on the accuracy of the
solution.’
STATEMENT OF BOUNDARY-VALUE PROBLEM IN
HODOGRAPH PLANE
COMPLETE HODOGRAPH

A description of the flow in the physical plane has been
given in part I, with figure 1 as the basis for the discussion.
For couvenience, this figure is reproduced here (with minor
changes) as figure 9. The corresponding hodograph of the
flow about the front wedge is shown in figure 10. The

Shock waves

—————Soni¢ line (VAr,sl)

——— Streamline

———— Expansion } Mach
Compression | lines

F1aurE 9.—Flow in physical plane,

0O l Vn (]
FiaurE 10.—Flow about front wedge In hodograph plane.

! The suthors are indebted to Willlam A. Mersman of the Ames Laboratory for suggeations
Jeading to certain of the muthematical procedures used in the analysis,

hodograph variables are the dimensionless speed V/a, and
the inclination of flow 8, where 17 is the local speed of flow,
a, is the critical speed, and & is measured relative to the z
axis.

The picture in the upper half of the hodograph plane ean
be described briefly as follows: The part of the shock wave
which borders on the subsonic region in the physical plane
appears in the hodograph as the subsonic portion AE of a
shock polar. The shape and position of the shock polar
are determined by the dimensionless free-stream velocity
Volas (or, what is equivalent, by the frec-stream Mach
number M,) and by the ratio of specific heats v.** The
portion of the central streamline from the normal part of the
shock wave to the stagnation point at the nose of the wedge
maps into the portion AO of the horizontal axis in the
hodograph. The image of the wedge itself is given by a
radial line inclined at the wedge angle 8, and extending from
the origin O to the point B on the critical circle (V/a,=1).
The shoulder of the wedge, which produces an expansion fan
of & locally Prandtl-Meyer typo in the physical plane, appears
in the hodograph as a portion of the downgoing characteristic
(epicycloid) starting at B. The last Mach line from the
shoulder to the sonic line (termed the separating Mach line
in part I) appears as a portion of the upgoing characteristic
which begine at the intersection E of the shoek polar and
critical circle. Point G, the point of intersection of the
epicycloids from B and E, fixes the extent of the downgoing
characteristic which must be considered in determining the
solution in the hodograph. A typical streamline in the
hodograph plane is shown by the line FCD.

To obtain a solution of the detached-wave problem in the
hodograph, a boundary-value problem for the differential
equations of gas dynamics must be solved within the region
AOBGEA. If the stream function ¢ is taken as the un-
known, the pertinent boundary conditions are as follows:

1. The value of ¢ is constant along the basic streamline
AOBG.

2. The streamlines (i. ¢., the lines of constant ¢) leave the
shock polar with a direction which is & known function of
location on the polar.

3. The increment in ¢ over the portion AE of the shock
polar has & preseribed value different from zero.

The reason for the first condition is obvious. The second
condition is & consequence of the requirement that, at every
point on the shock polar, the direction of the shock wave as
computed from the solution for ¢ must be compatible with
the direction given by the equations for an oblique shock
wave in a uniform stream. The third condition. prevents ¢
from being simply a constant throughout the hodograph and,
in effect, fixes the scale of the flow field in the plysical plane.
It will be noted that no condition is preseribed along the
boundary EG in the hodograph. Frankl has proved (refer-
ence 5) that the solution determined by the foregoing
boundary conditions is unique.

1@ The equations which are pertinent here can he found in the work of Frankl (referenco 8).
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SPECIALIZATION TO SMALL DISTURBANCES

Original houndary-value problem.—As has been shown by
Guderley (reference 2), the equations of the boundary-value
problem in the hodograph ere considerably simplified when
restriction is made to the neighborhood of the critical speed.
To this end, the quantity y is introduced according to the

relation
a

p=(r 1y L=

*

(18)

and n and the stream angle 6 are assumed sufficiently small
that only their lowest powers need be retained in the analysis.
This means, in effect, that the right-hand portion of the
previous hodograph (including the shock polar itself) is
made to shrink down to the vicinity of the point H, which
defines the intersection of the eritical circle and the hori-
zontal axis.

When the foregoing procedure is carried out and the limit-
ing process is counteracted by a suitable enlargement of
scale, the situation in the small-disturbance hodograph (. e.,
in the 4,0 plane) appears as in figure 11. Here the critical

—ony

om 828 B]
G \G
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-
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- A 'H
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-‘qa
F1are 11.—8mall-disturbance hodograph.

speed corresponds to the vertical axis n=0. The equation
for the upper half of the shock polar in the simplified hodo-
greph has the form

=(re—n) 4/ 223 (19)
where 3, is the value of 7 corresponding to the free-stream
velocity Vo' By virtue of the limiting process, the stag-
nation point at 0 has moved, in the present system of axes,
infinitely far to the left. As & result, the part AQO of the
horizontal axis (#=0) extends now from p=—y, to 9=— =.
The image OB of the wedge is similarly represented by the
horizontal line 8=6,,7<0. The characteristics, which com-
plete the boundaries of the field, have the simple form
5]
G=const. + % 7% (20)
On the basis of the usual assumptions regarding fiow near
the critical speed, the differential equation for ¢ reduces, in
the present simplified hodograph, to the form

Y—1Yee=0 (21)

1t The derivation of this and the other equations for the simplified bodograph is given by
Guderley in reference 5.

This is the mixed elliptic-hyperbolic equation studied by
Tricomi in reference 13. The boundary conditions along the
central streamline require that ¢ be constant—say 0—on
AQ end OBG and that y—0 as y—>{— =) for056<8,. On
the upper half of the shock polar, the boundary conditions
require that the lines of constant ¥ must have the slope

dé 1.+ 77 ’J’Tl‘[‘ﬂ

dn 37,57 2 (222)
On 2 line of constant ¢, d6/dn can be replaced by —y,/¢s so
that the foregoing condition can also be written

_ Mot 7n n.—l—::

The final boundary condition requires that ¢ must have
some given value Y70 at the point E. Since the coordi~
nates of the fow field will ultimately be expressed in terms
of & characteristic dimension of the wedge, the actual value
assigned to yg is purely a matter of convenience. Asbefore,
no boundary condition is specified along the characteristic
EG.

Elimination of the supersonic region. —The foregoing is the
boundary-value problem for the finite wedge as formulated
by Guderley. It was the original intention in the present
work to obtain a numerical solution of this problem on the
basis of the boundaries and boundary conditions which have
been described. Efforts in this direction failed, however,
because of difficulties in obtaining convergence of the relaxa-
tion process in the supersonic portion BGE of the hodo-
graph.”? Similar difficulties have been reported in references
25 and 26 with regard to relaxation calculations of the
transonic flow through a converging-diverging nozzle. The
reasons for the difficulty in the present case are not apparent.
Fundamenta! questions would appear to be involved con-
cerning the stability and convergence of the finite-difference
scheme for the Tricomi equation in the hyperbolic domain.
A study of these matters, similar perhaps to that reported
for the wave equation in reference 27, may be a prerequisite
to numerical solutions of mixed-flow problems in the general
case. In the present example, however, the difficulty can
be circumvented by modifying the boundary-value problem
so as to eliminate the supersonic region from explicit con-
sideration.

The elimination of the supersonic region depends on &
formula given by Tricomi (reference 13, equation (2.19))
which relates the behavior of ¢ on the vertical axis to its
behavior on & characteristic. In the present case, in which
¥ is identically zero on the characteristic BG, this formula
reduces to an integral relation between ¢ and ¢, at points
on the sonic line. This relation has the form

F=— klf (XG%I,, d\ (23)
where
}\=6,.-—9
F\)=y(0,9)

GO\)= ¥(0, 6)

11 Several procedures were trled in the supersonie region, nsing hoth s square lattice and
& lattice following the characteristics. All were unsnccessful,



772

and M\’ is a variable of integration (see fig. 12). The numeri-
cal constant k, is given by
. __3MT¥1/3)

where I'(1/3) is the gamma function of the argument 1/3.
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FIGURE 12.—Hodograph In vicinity of sonic line.

For the accuracy required in the later numerical work,
the value of this constant may be taken as

ky=1.013 (24b)

Satisfying equation (23) everywhere on the sonic line from
B to E is completely equivalent to satisfying the condition
=0 on the downgoing characteristic from B to G.

For the present application, it is convenient to invert
equation (23), which can he done by means of Abel’s formula.
This gives (see reference 28, p. 229)

V3 d [ Fo

Gm:“zwkldx o (A—n

,gmdx'

The differentiation indicated on the right is readily accom-
plished by first transforming the integral to one with fixed
limits by means of the substitution A’=¢x. The result is,
after reverting to the original notation,

A3 1
2ﬂ'k1 A

1 * FQ ) 'F)‘(X’)
:_;'f ()\ N‘)EIS dN+ f (K )\i)m dR]

Transforming the first integral through integration by parts
and noting that F(0)=0, one obtains finally

G\)= v3

2k,

GON=—

i\
[ 62w av

This can be written in the #,8 notation as

l&q(o 6)+2 k (;010(0 ggs ey’ = (25)
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where #/=60,—\’ denotes the variable of integration. As
with equation (23), satisfaction of equation (25) everywhers
on the sonic line between B and E insures that ¢ is zero
everywhere on the characteristic from B to G. By regarding
equation (25} as a boundary condition aleng BE, the region
of solution of the partial differential equation (21) can he
confined to the purely subsonic portion of the hodograph
(#=20). Relaxation methods can be used to solve the
resulting elliptic problem without essential difficulty.
Equations in normalized form.—To carry ouf the numerical
calculations, it is convenient to normalize the equations of
the boundary-value problem by means of the transformation

- N = [/
e I= V2

This is equivalent to infroducing the rules for transonic
similarity (see for example, references 2, 15, and 29). The
particular form of transformation chosen here has the advan-
tage for the present work of providing & unique shock polar
with conveniently Jocated horizontal and vertical intercepts.

With the foregoing substitution, the differential equation
(21) takes on the following form in the 4,8 plane:

Yri— 2 Y=

(26)

F1aURE 13.—Boundary-valus problem In 5,7 plane.

Consistent with the elimination of the supersonic region, the
boundary-value problem can now be summarized as follows

(see fig. 13):
1. On the basic streamline AOB:
¥=0 for §=0,7s—1 (28)
¥=0 for §=8,, 750 (29)
$—0 for o>— o, 056 S 6, (30)
2. On the shock polar AE:
for

' 5=(1—ﬁ)x’1+ﬁ, —15%50 (31)
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3. On the sonie line BE:

$50,)+ s L " ¥0,8) 44r_g

(6'—a)"
for ;
1s6s6,
where
31/2
h:é’”’—-’rk; (32)

4. At the point E:
Y=y (arbitrary constant=0) for 7=0,8=1 (33)

It is apparent from the preceding equations that a solution
of the problem will depend on only the single parameter 4,
which defines the position of the upper boundary in the #,§
plane. This pareameter is directly related to the transonic
similerity parameter §, which was used in the presentation
of the results in part I (see equation (1)). The relation is
easily derived with the aid of equations (18) and (26) plus
the equation

Af—1 vV

(vy+1) =a—,—1 34

which relates the speed and Mach number in the small-
disturbance theory. (It is also necessary to note that, to the
approximation of the theory, 6, is equal to #¢.) The final

result is
9113
fo=: 3 5)

2/3
w

SOLUTION OF BOUNDARY-VALUE PROBLEM IN
HODOGRAPH PLANE

The solution of the boundary-value problem in the 7,8
plane is obtained in two steps, according to established pro-
cedures for the numerical treatment of partial differentisl
equations. (For introductory articles, see references 30, 31,
and 32. For an extended discussion, see reference 33.) In
the first step, the domain under consideration is covered by
4 square lattice, and & finite-difference approximation to the
differential equation or boundary condition is written for
each lattice point. The boundary-value problem for the
partial differential equation is thus reduced to a problem in
solving a large number of simultaneous algebraic equations.
Solution of the latter problem by relaxation methods is the
second step.

REDUCTION TO FINITE-DIFFERENCE EQUATIONS

The sarrangement of a typical finite-difference lattice in
the 4,8 plane is shown in figure 14. The basic lattice inter-
val, which is the same in both directions, is denoted by A.
Adjacent to the shock polar, the intervel is adjusted so that
the terminal lattice points lie on the polar itself. For pur-
poses of formulating the finite-difference equations, the lat-
tice points are conveniently grouped'into five categories as
foliows (typical points in each category are indieated in
the figure):

a. Regular internsal points

b. Points far to the left

¢. Points adjacent to the shock polar

?’
0 B.3,
ui
¥ — & - &
—t ¢ - & -
A
‘_:n—- *-— m—
b o] IA
— - >
— > — L
F - - - &
* - ¢
| —
~
E !
c
y
/
0 A
-8 — >

FIGURE 14 ~Tlustrative Anite-difference lattice In the 3# plane.

d. Points on the shock polar
e. Points on the sonic line
The form of the finite-difference equation pertinent to each
category will be developed in the following paragraphs.
The methods employed are standard, except for the some-
what novel treatment of the boundary conditions along the

shock polar and sonic line.

Regular internal points.—The category of reguler internal
points comprises all points interior to the boundaries buf
not immediately adjacent to the shock polar. The situa-
tion in the vicinity of such a point is as shown in figure 15.

|
?

3
Figrre 15,—Regular internal pofnt.
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The difference equation which applies here is obtained by
suitable approximation to the differential equation (27).

If it is assumed that the unknown function y=1y(7,8)
may be expanded locally in the form of a Taylor's series,
the values of ¢ at 2 and 4 may be written (see fig. 15)

A2 A3
Y= ¢0+A¢'¥In+§‘f 'Pﬁlo'{"m '/’ﬁilo‘[‘ 0(A4)

Al A?
\"4=%—A¢ifo+'2—l' B"ﬁlu"‘ﬁ ¥imlot+ 0(A%Y)
Addition of these equations and solution for ¥sl, gives

Parlomrzz (Be— 20+ ¥a)+ 04D (368)

which is a well-known difference expression for the second
derivative. The corresponding derivative in the vertical
direction is similarly represented by

1
'h‘llo=ﬁ (Ys—2v0+ 1)+ 0(4%) (36D)
Substituting these expressions into the differential equation
(27) and neglecting the terms 0(A?) then gives for the finite-
difference equation at a regular internal point

Yot va—270(Y1+¥s) —2(1 —2ii0)¢o=0 (37)

where 7, denotes the horizontal coordinate of the point in
question. The difference equation for internal points is
thus the same for points on a given column but differs from
one column to the next. For & point adjacent to the upper
boundary OB—as, for example, the point a’ in figure 14—the
value of ¢, must be set equal to zero in accord with the
boundary condition (29). Similar considerations hold for
points adjacent to the lower boundary OA.

Equation (87) represents the simplest possible Bnite-
difference approximation to the differential equation (27).
As is apparent from the derivation, the error involved is of
0(a?). Consideration has been given to improving the ap-
proximation by including additional lattice points in the
finite~difference equation or by incorporating higher-order
difference corrections in the later relaxation work (e. f.,
references 34, 35, and 36). Because of the complicated
nature of the boundary conditions along the shock polar
and sonic line, however, consistent application of these pro-
cedures did not appear feasible. The requisite accuracy in
the present work has therefore been achieved by suitable
decrease in the mesh interval A in those regions in which
the function ¢ varies most rapidly. This procedure has the
secondary advantage of providing closely spaced values of
the derivatives which are required for the later transforma-
tion to the physical plane.

Points far to the left.—In order to carry through the
numerical analysis, it i3 necessary that the finite-difference
lattice be terminated at some distance to the left in the
hodograph. This can be done with the aid of an asymptotic
solution valid for large negative values of 7.

By separation of variables, it can be shown that the general
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solution of the differential equation (27) in the region

#<—1, 056<8,, subject to the boundary conditions (28),
(29}, and (30), is

y=> A =% sin '(”"_’9) o [_‘"g!. (_2,3)8;1]
nm] 8y 38,

where K,y is the modified Bessel funetion of the second kind
of order }§ (notation of reference 37) and A, is an appropriate
constant. At sufficiently large negative values of 4 the first
term of the series will predominate, and the above solution
can bo approximated by

¥=Ay —7 sin (E:E) Rys [:'é“g.— (—2’7)3"']

b

If K,;; is then replaced by the first term of its asymptotic
expansion (reference 37, p. 202)

Kl,,(z)g-\/;—z et

there results finally for ¢ the expression

. [wb —i4 —T (—o2pp
¢=Bsm(~&;—)><(—ﬁ) u exp[ 35“,( 27) :l (38)

where B is an unknown constant.

The asymptotic solution (38) makes it possible to termi-
nate the finite-difference lattice at a position on the left,
Consider a typical lattice point in a column located at
7=—48 (as, for example, the point b in fig. 14). The neigh-
boring points are then as shown in figure 16, where the

1

3
F1auRB 18.—Point at fe=—8.

point 4 now represents a fictitious lattice point located at
f=—(B+A). If g is taken sufficiently large that A/8<<1,
then it follows from equation (38) that, to a first order of
approximation,

%:(1 —ZAE) exp (-—%:% \%)
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Substitution of this value of ¢, into the previous equation
(37) gives for the finite-difference equation at & point on the
left-hand boundary

po 28090+ (1—5) esp (— 5426 )~
21+26) [lo=0 (39)

The value of § to be used in any particular case is determined
on the basis of computational experience. In general, the
larger the value of §,, the larger must be the value of 8 to
assure that the use of the asymptotic solution (38) is justified.
Since the over-all result is insensitive fo changes in the left-
hand portion of the field, however, the choice of g is not a
eritical matter.

Points adjacent to the shock polar.—Points adjacent to the
shock polar require special treatment because of the irregu-
larity of the intervals encountered near the curved boundary.
Consider the typical case shown in figure 17 (corresponding
to point c in fig. 14). Here b and & define the length of the
irregular intervals relative to that of the regular interval A.

5

*t

hA

/

Fravax 17.—Polint adjacent to shock polar,

To obtain the desired accuracy, it was found advisable in
the present case to include three rather than two neighboring
points in each of the coordinate directions. The value of ¢
at the points 2, 4, and 6 is therefore written

ve=dorkatylot oyt t 0y ooty

A2 3
b= o slot 5y baslo— 5 s+ 049

-1
-1
[}

(ZA)2

2A

ti=vo—20%3lo+ 2 gl — 2 gl 0

These may be looked upon as constituting three simultaneous
equations for the first three derivatives of ¢ in the horizo_ntal
direction at the point 0. Solution of these equations for
Ysilo glves

1 1% 2(2—F) 3
\"ii'tl Al [_2+

w2t

FhT TR

6
KrpeTn T

The corresponding expression for ¢gi, is identical except
that £ is replaced by % and ¢, ¥,, and ¢ by ¢s, ¥4, and ¢y,
respectively. Substituting these expressions for the two
second derivatives into the differential equation (27) and
neglecting terms of 0(A?) then gives for the finite-difference
equation at 0

6 2(2—k) 1—k

ATReTR YT 1or b agphe—
) 22—k), 1—h
e s <o el =
[?’—?—25‘0 3—-]:h'] Ye=0 (40)

This reduces to the previous equation (37) when k=h=1.
(The functions of & and & which appear here have been
tabulated in reference 38. The intervals of tabulation are
not always sufficiently small, however, to provide the
accuracy needed in the present work.)

Points on the shock polar.—In past applications of
numerical methods to problems involving eurved boundaries,
it has not ordinarily been the practice to use a lattice with
points located on the boundary itself. The prescribed bound-
ary conditions have then been incorporated in the following
manner (cf. references 39 and 40): First, the finite-difference
lattice is extended, on the basis of the regular lattice spacing,
to include fictitious points external to the boundary. This
makes the Iattice geometry at iniernal points adjacent to
the boundary the same as at all regular internal points.
Next, with the aid of the boundary conditions and suitable
interpolation and extrapolation formulas, an expression is
obtained for the independent variable at each external point
in terms of the values at neighboring internal points. Finally,
by substituting these expressions into the finite-difference
equation for a regular point, the difference equations are
written for the internal points adjacent to the boundary.
In this way the boundary conditions are incorporated
implicitly into the difference equations at internal points.
The procedure is parallel in many respects to that used in
terminating the present lattice at the left-hand side of the
field.

Although a procedure of the foregoing type can be devised
to take care of the boundary conditions on the shock polar,
a different approach was found advantageous for the present
work. In this approach, the lattice points are placed
directly on the boundery as previously described, and a
difference equation is obtained at each such point by suitable



776 REPORT 1095—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

finite-difference approximation to the boundary condition.
This leads to a somewhat larger system of simultaneous
equations than would the more usual procedure but has been
found in the long run to give more accurate results with less
total effort.

The boundary condition (31}, which is thus the basis for
the finite-difference equations on the shock polar, cen be
written o ' '

i—S(HiWi=0 (41)
where
S(ﬁ)=§ig;\11+ﬁ

The problem now is to determine difference expressions for
the derivatives ¥5 and y;7 at points on the polar. Consider,

for example, the typical situation shown in figure 18 (cor-

responding to point d of fig. 14). To determine 5, the value

lrs
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A
®|
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d / | E;
o]
A
R /
l A o ———

FIgURE 18.—oint on shock polar.

of ¢ at each of the interior points 1, 2, and 3 is written, as
before, in terms of & Taylor’'s series about the boundary
point 0. Solving the resulting three equations for the
derivative ¥; at 0 then gives

_I[_B@ARA20 4R (+R) @A)
Y R T ERATC R ) a7 O
MEED port 2O ]+ ot (42)

This expression, which includes terms of 0(A?), is inconsistent
in order of accuracy with the expressions previously employed
in setting up the finite-difference equations at internal points.
Since end differentiation is, even for a given order of mathe-

matical accuracy, inherently less precise than differentiation
at a midpoint (see error terms in reference 38), the retention
of the second-order terms was here thought advisable.

The determination of the corresponding expression for yi
is a bit more involved. Expanding ¢ at the boundary points
4 and 5 by means of Taylor’s series in two dimensions gives

: 2 4
bt AValo— FValsrt 5 idlo+8eilo IR il 0087

A? . {eA)
Ys=vo+ A+ eA‘Pilo‘l'ﬁ Yaslotea %i‘]o'l"—z'!— Yiilo+0(A%

An expression for ¥, is already known from equation (42)
in terms of v, ¥1, ¥2, and ¢s, and an expression for ¥;;(q can
similarly be determined. The two foregoing expansions may
thus be regarded as constituting two equations for the three
unknowns ¢z, ¥54le, and ¢33,  To solve for ¥, one more
equation is necessary. This is provided by the differential
equation (27), which also applies on the boundary and which
may be writien at the point 0 as

\[’iilo—zﬁo‘h I|o=0

The solution for ¥4/, is then found as

g 1f e . e—f J o, _2ef le—f
‘r”ﬂIU_A{ E"i‘f‘p‘ e+f ‘&Q—I-G“‘f,l’s e'l’f %|0+2 e+f
=) g o= T b= S [} 0@

(43)
where ;o is given by the previous equation (42)."

The required finite-difference equation for the point on the
shock polar can now be obtained by substituting expressions
(42) and (43) into the boundary condition (41} and neglect-
ing the higher-order terms in each case. The result can
finally be written

(1—th(2+h)+2L(3+2I_z)¢_h(2+h)+4§g1—j—h)‘p+
. 2h ! 1+h :

R(1-+h)+2L(1+2k) .
2<(2+h) ‘Ps+¢K104—fI1%—
h(2+h)y+2(1+R0)2, 6L _
e Tn gt e DK w=0 @
where K#K(e,f,ﬁ,) and L=L(e,f,4,) are given by
Ke 1
" (e+ SR +2ef

1=¢-n (=) &

Equation (44) is convenient for points on the shock polar
for which —0.6s#<0. For —1<4<—0.6, the general
procedure is the same except that the points 0, 1, 2, and 3 are
now more conveniently located on & horizontal line and the
quantities e, f, and % are redefined accordingly (see fig. 19).

13 It will benoted that the coefficlents in equation (43) become nndesirably large as f~—e and

are undefined when fm=—e¢. ‘This results from the fact that the determinant of the cocfficicnts
in the simultaneous aquations nsed to obtain "ilu vanishes when fe~¢.  Difffcultios from this

source can be avoided by judieions cholce of the lattice points.
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FigURE 10.—Alternative arrangement for point on shoek polar.

The resulting finite-difference equation is identical with
equation (44) except that the terms which previously arose
from the expression for ¥3|, are now multiplied by —1.

Points on the sonic line.—The difference equation for
points on the sonic line is obtained by finite-difference ap-
proximation to the boundary condition (32), which can be
written, to the accuracy required in the numerical work, as

%0, é)+o.342f;' (%‘%%%d@:O

The procedure varies depending on whether the difference
equation is being written for the first point below the upper
boundary or for one of the lower points.

First point below boundary:

At the first point below the upper boundary the situation
is as shown in figure 20. To approximate the integral in

8

_ A _ A

i i 0
FiaURE 20.—First point on sonic line.

equation (45), use is made of Guderley’s singular solution
for transonic flow over a convex corner (reference 18). On
the basis of this solution, it can be shown that the variation
of ¥ along the vertical axis in the immediate vicinity of the
point B is of the form

(BB (46)

(45)

If the lattice spacing is mede sufficiently small, this asymp-
totic relation may be taken as ‘approximately correct over
the entire intreval from B to O, so_that within this‘interval

g _g\vs
k"=¢'o ('%A—B)

4, (8,—6)3
k"i=—§ Yo (_A“‘_)

and

For the first point below the boundary, the integral in equa-
tion (45) can thus be written

¢ 'Pi(oié’) d§l=__4_\"0 f;'_‘

(F—007 o
i (B —gye 3AY? d6'=

[A—(8,—87]%

t [F 8

where r=(6,—)/A. The integral on the right can be re-
duced to standard form by meansof the substitution r(1—7)=
Z/4, which gives

1 s 1 da
J; T dr 3 dz

I—B T2y T2

This is an elliptic integral of the first kind. Its value, as
determined from the equations and tables of reference 41, is

T 3 ., 1.846

The integral in equation (45) thus becomes, in the present
case,

d ‘1’7(015,) d§’=

£oa.650 Yo — Yo .
- — iy $X2.630 $,5=8.533 3 (47)

To approximate the derivative ¢; in equation (45), ¢ is
expanded at points ¢ and /i by means of a Taylor’s series
about point 0. Terms involving ¥4/, may be omitted here,
since the differential equation (27) shows this derivative to
be identically zero at points on the sonic line. The values of
¢ at ¢ and & can thus be written

. A3
U= %-Axbilzo—:—;‘! Yaaslo 0(AY

3
V= vo—28%3lo— o) Yigelo 089

Solution of these equations for |, gives, to the second
order in A,
1/7 4 1
'f’ilo=z (lg Y3 &f'f'l-g 1!'::) (48)
Substitution of expressions (47) and (48) into the boundary

condition (45) gives the following finite-difference equation
for the first point below the upper boundery:

4

1 _
2 bo—g bu—(g+1.208 A”*) Yo=0 (49)
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Unlike the previous equations (37), (39), (40), and (44) this
equation involves the value of A.
Lower points:

For a general point below the first lattice point, the situa-
tion is as represented in figure 21. The integral in the
boundary condition (28) is here evaluated in three sections.

on-|

om+!

o-i
F1gURE 21.—General polnt on sonie line.

The integral over the lattice interval from B to n-1 is evalua-
ted on the basis of the asymptotic relation used before. The
integral from n-1 to 1 is evaluated by assuming a linear
variation in ¢ over each of the included intervals and then

integrating analytically. The linear assumption is suf-
ficiently accurate here, since this entire middle section con-
tributes only a relatively small portion of the complete
mtegral The integral from 1 to 0, which contains a singu-
larity in the integrand at the point 0, is evaluated by ex-
pressing ¢ as & cubic in terms of its value at the points 2, 1, 0,
and -1 and then mtegratmg analytically as before. The
added accuracy of the cubic is required here, since this last

section contributes by far the majority of the over-all value.
The boundary condition (45) may thus be written

¥:(0,8)40.342(J; + Jy+-Jo) =0 (50)

where the J’s represent the three component integrals just
described.

Proceeding to the details of the above procedure, the
integral from B to n—1 is first written

= Hp—a %;(0,5') 2r A¥n-1 TV
J‘=f.-, [nA—(@.,_—-é’)]’“de 3A’“ﬁ(n—r)”‘d

where, as before, r=(§,—f’)/A. This integral can be
expressed, if desired, as the difference of two clliptic intograls
of the first kind. For present purposes, however, it is more
convenient (and sufficiently accurate) to expand (n—r)~32
according to the binomial theorem and integrate termwise.
This gives finally

1 8 , 2, 160
J‘=(nA)=fs(1+§Th'+9n=+1053n=+486n4+ )"”'"‘ (51)

This expression is used, of course, only for n22.

On the basis of the assumption of s linear variation of ¥
between adjacent lattice points, the integral from n—1 to 1
becomes . :

= fo-tn-Da '[’i(orél) i’ =
J2 f [nA—(éu-é')]m de

1 ¥mi1—Vm (fe—a-ma 1__— g’
mZ-I +A »I;.— (n=m—~1)a [nA_(éw—é,)]u' d

Carrying out the integration gives

=2

=g 2 (D Y —dss)  (520)
This expression is valid for n23. (For n=2, J; obviously
does not exist.) For n>3 it is convenient to rewrite the
summation so that the value of ¢ at a given point is not
repeated in successive terms of the series. This is done by
separating expression (52a) into two series (one with ¥, and
one with Y1), expanding these series, and then regrouping
terms.  The result is finally

Jp= Am{[2”’ 1]&"1'{'?‘? [(m 1) 3—2m12 4 (m — 1)113), —
[(n—l)”‘—(n—2)”’]¢.-:} (52b)

This expression is valid for n=4.
To evaluate the integral from 1 to 0, ¢ is reprcscntcd
within this interval by a cubic of the form

— a+b(e a)+ (a a)_[_d(e 6,—8\

where a, b, ¢, and d are determined such that ¢ has the
proper values at the points 2, 1, 0, and —1. This expression
is to be substituted into the integral

= [ %(0,5’) g’
Js— - te-14 [nA___(éw_ér)]ug dB
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The result is finally, after evaluation of the coefficients 4, &,
¢, and d,

—1/9 7
J3=Ig% (% \"z—g_é' ‘[’1+?;—2' ‘!’u+;—:§‘ ‘P-l) (53)
The finite-difference equation for a general point on the
sonic line can now be obtained by replacing the J’s in equation
(50} by the expressions (51), (52), and (53} and using the
previous expression (48) for the derivative ¥s}¢. The result
is a lengthy linear equation involving the value of ¢ at the
points 4, 4, —1,0,1,2,. .., n—1,n. Fortunately for the
later relaxation work, the coefficients of the terms turn out
to be relatively smsll for all points above the point 2.
Distribution of mesh points.—¥When an attempt is made to
solve the present problem with a coarse mesh, it is soon found
that most of the variation in ¢ takes place in a relatively
small region near the intersection of the shock polar and
sonic line. To obtain a sufficiently accurate solution in a
practicable length of time, it is therefore necessary to employ
a graded lattice, that is, a lattice which has different spacing
in different parts of the field. Figure 22 shows the distribu-~
tion of lattice spacing found satisfactory in a typical case
(8,=1.8). The particular arrangement shown here involves

g
— Byrl6 ' P
|
} ;
| l 114
! A=Q2 | e —
; | | A=005
| / ' ————-
| ;
I // A=00257 7 L0
i 7/ -
Py
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} I
(
| { 1.4
I ) '
I ! J2
| | )
i |
1 1 1 | 3. i 1 ! _t %
-20 -18 -6 -4 -2 -0 -8 -6 -4 -2

FigURE 22 —Distribution of Iatt{ce spacing for #.=1.6.

a total of 228 lattice points. For other values of 8, the
grading of the lattice follows the same general scheme.
Obviously, however, the total number of lattice points must
be increased as the upper boundary is moved farther from
the shock polar.’*

Formulas (51), (52), and (53), which are used to approxi-
mate the integral along the sonic line, presume the existence
of lattice points at a uniform interval over the full distance
from the upper boundary to the point in question. This
condition is not fulfilled in a graded lattice such as that
indicated in figure 22. Some modification of the method

H Oceastonslly, when two points on or adjacent to the shoek polar fall very close togetber,
one of the points is arbitrarily omitted. An expression for the omftted value of ¥, which is

then necessary to complete the difference equation at neighboring points, is found by parabolfe
Iinterpnlation between the values at the available locations.
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must therefore be made to obtain the finite-difference equa-
tion for a point on the sonic line in one of the regions of finer
mesh. This requirement was satisfied by means of a simple
averaging process in which the contribution of nonexistent
fine-mesh points is replaced by an average contribution
expressed in terms of ¢ at bracketing points on the available
coarser net. Since the contribution of individusl points is
small even for points only moderately removed from that
at which the equation applies, a rather crude averaging
process is sufficient in most cases. (The details need not
be given here as they would soon become apparent to anyone
working with the method.) When the averaging procedure
would not be sufficiently accurate (as when the point at
which the equation applies is near the line of demarecation
between two different sized meshes), fictitious intermediate
points are introduced into the coarser net and the value of ¢
at these points is obtained from plots of the distribution of
¥ along the sonic line.

SOLUTION OF FINITE-DIFFERENCE EQUATIONS

By the methods of the foregoing section, & finite-difference
equation can be obtained for each lattice point in the hodo-
graph plane. The result is a large number of simultaneous
algebraic equations involving an equal number of unknown
values of . Since the number of unknowns in each equation
is small, the equations lend themselves well to solution by
relaxation techniques.!®

The mechanics of the relaxation process have been well
described by various authors (references 30, 31, 32, and 33)
and need not be gone into here. For present purposes it was
found satisfactory to take ¢ in the boundary condition (33)
equal to 10,000 and work with integer values’of ¢ throughout
most of the field. The residuals in the relaxation process
were eliminated to within limits of £2 (with due care, of
course, that all residuals in any given area were not pre-
dominately of the same sign). To obtain satisfactory smooth-
ness of the solution near the left-hand boundary in some
examples, it was necessary in this region to work with values
of ¢ to 0.1 and eliminate residusls to within £0.5. WWhen-
ever the coefficients in the finite-difference equations were
relatively small, the corresponding terms were neglected in
the point-by-point adjustment of ¢. The error so intro-
duced was eliminated periodically by recomputing the residu-
als using all terms in the finite-difference equations. This
procedure was particularly helpful in the case of the lengthy
equations which apply at points on the sonic line. The
transition between the various regions of the graded lattice,
which is not often discussed in the literature, was accom-
plished by the use of overlapping fields in essentially the
manner described in reference 42.

By means of the foregoing procedures, the boundary-value
problem in the hodograph plane has been solved for values of
. of 1.3, 1.6, 2.4, and 4.2. These are equivalent, respec-
tively (see equation (35)), to values of & of 1.058, 0.921,
0.703, and 0.484 as given previously in part I. As an ex-
ample of the solution in the hodograph plane, the variation
of ¢ for #,=1.6 is shown as a function of 7 and # in figure 23.
I 1 It [s Interesting to note that, of the complste set of simultaneous equations, only two—
those for the polnts oun the shoek polar and sonie line immedfately adjacent te the polnt E—

are not homogeneons. Only this fact prevents the solution of the complete set from being
{dentically zero.
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Fiaure 23.—Representation of ¢ a8 & function of 7 and 8 for Bum=1.6 (§o=0.921).

(These results correspond to the results shown in the physical

plane in fig. 3.) Figure 23 shows clearly the rapid variation

of ¢ near the intersection of the shock polar and sonic line.
The calculated values of ¢ corresponding to figure 23 are
listed in table I at the end of the report.

TRANSFORMATION TO PHYSICAL PLANE
FLOW FIELD

The transformation from the hodograph plane to the
physical plane is governed, in the small-disturbance theory,
by the following equations (cf. reference 2):

(y+ 1)

Puly

L
($udn +¢edﬂ)=p—*;; dy

dz=

i (71 \"ﬂdﬂ + \buda)

1
Paly

dy=

the second of these equations implies that, in a flow field
determined according to the transonic small-disturbance

theory, all streamlines appear as straight lines parallel to
the horizontal axis. When expressed in terms of 4 and ¢
the foregoing equations become

dr= D"
a

Paley

g(zmdﬁwﬂ@)

1
Pl

dy= (wdﬁ+w.~dé)=p—j,j dy

The length 7 of the wedge, which is equal to one-half the
chord of the double-wedge profile, can be found by inte-
grating the first of these equations over the upper boundary
OB of the hodograph (see fig. 24). This gives

j_¢ D"

h - - -
5= o 2><2.Emmh(m9s)dn
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§'§w 8

§r= constant_

-

=l
Fraure 2¢.—Small-disturbance hodograph In normalized form.

VWith this relation the previous transformation equations
can be put in the dimensionless form

4 (L)=f (2ivadi+yadd) (54)
v+ 1)1"*\/”;" i(¥)=7r a9 (55)

where [, represents the integral
L=" w6, (56)
Ta obtain the flow field in the form given in part I, equation

(55) must be rewritten in terms of the ordinate function ¥
(see equation (2)). The result, derived with the aid of the

relation
. =
- gw='\’2 nf:cja
1<
173
ar =t +oeomrd (D=0

Integrating this relation, subject to the condition that Y=
when ¢=0, gives

(26‘ )us

=+ 1o (4)="45y (57b)
To utilize the foregoing equations for actual computations,
it is first necessary to evaluate I,. Since numerical values
of ¢ are available in the hodograph only for —<%4<0, the
evaluation must be caried out in two parts as follows:

- - —-8_ -
L= ia(apa)dit | iGN (69
The first integral is evaluated from the results of the numer-
ical solution by mechanical integration of a curve of 7y4(7,8.)

versus 7. The values of the derivative used for this purpose
are obtained from the equation

wlo=3 (—ght5v:) (59)

9

2
F1aGrE 25.—Point an upper boundary.

where the notation is as shown in figure 25. This equation
is derived in the same way as equation (48), except that ¢,
is here taken equal to zero in accord with the boundary con-
dition.*® It can be shown from Guderley’s singular solution
for corner flow that for small negative values of 7 the curve
of 7¥#(71,0,) must behave essentially as |5[*2. This result is
useful in fairing the numerical results near 4=0. The first
integral in equation (58) contributes by far the majority
(about 99 percent) of the total value of I,.

To evaluate the second integral in equation (58) use is
again made of the asymptotic solution (38). For this pur-
pose, the constant B is determined such that the value of ¥7
given by the asymptotic solution matches the numerically
determined value at the point (—§8,8,). Substitution of
equation (38) into the second integral of equation (58} then
gives

BV —8,84) %
_x 2
exp[ 35'(213)‘]

J e | 22 |di @)

[ huntapadi=—

where yY3(—B,8,) is determined from equation (59) applied
at 7=—fB. The integral on the right is transformed through
the substitution

T o
g, 2=

which gives

f__:(—’-l)"“ exp [— 3L§n(_25)3,, dim

3)(23“(‘;9 ) f

8 The fact that the second derivative ¥77, may be taken as zero in the present derivation
follows from the boundary condition and the differentisl equation (10}.

l,"ﬁe—udw
(23)3(!
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The integral here is then found with sufficient accuracy by
means of the following asymptotic formula, valid for large
values of the lower limit (see pp. 95-96 of reference 43):

-]
f @ leTvdw 2" et
2

Equation (60) thus reduces finally to

[P azi=—(B) tewi—t00 @

With the value of I, known, equations (54) and (57) can be
used to obtain the coordinates z/¢ and Y corresponding to
any point in the 7,6 plane. The value of Y is obtained by
direet substitution of the appropriate value of ¢ into equation
(57b). 'The value of z/e must be found by suiteble integra-
tion of equation (54). The location of the vertex A of the
shock wave is found, for example, by integrating equation
(54) along the line OA in the hodograph (see fig. 24). If the
leading edge 0 is taken as the origin in the physical plane,

this gives .
@fi}‘., f_, i@ 0di  (62)

The integral here is evaluated in two parts following the pro-
cedure previously used in determining I,.

For the abscissa of a point F on the shock wave, equation
(54) gives

(f)f(%)ﬁﬁ f AF (2iadi-+sdb)

where the integration is now taken from A to F along the
shoek polar. For purposes of numerical evaluation, the
integrand here can be simplified by writing

2iysdi+ yzd 8 27+ (a/¥s) (d/d7) , dy
vidi+¢d 6 (slda)+(d6/d7)

If (Gs/é3) aﬁd (d0/d#) are replaced by the appropriate func-
tions of 7 from equations (31), there results finally

GRCRE AT

The integral in this equation is evaluated by plotting a curve
of ¢ versus 417 from the numerical results along the shock
polar and cerrying out the necessary integration by me-
chanical means.

The abscissa of a point on the sonie line is found by inte-
grating equation (54) along the § axis from B to C. Since
point B is situated in the physical plane at x/fe=¥, this gives

2ipsdi+yrd b=

dy=

( ) '° " (0, b (64)

The integral here is evaluated by mechaniecal integration of a
curve of ¢5(0,4) versus 8, where ¥4(0,8) is found from equa-
tion (48). As can be seen from equation (45) and relation
(46), ¢3(0,6) in the vicinity of point B varies essentially as
(6,—8)¥5. This fact is of use in drawing the curve of y5(0,8)
near §=0,. It can further be scen with the aid of equation

(57b) that near the shoulder of the wedge the transformed
sonic line has the form

z\ 1 oy
(C)c 2 Y

This relation is useful in establishing the detailed shape of
the sonic line in the physical plane. It shows, in particular,
that the sonic line will have a vertical tangent and an infinite
curvature at the shoulder of the wedge.

PRESSURE DISTRIBUTION AND DRAG

To complete the analysis of the front wedge, it is left to
determine the pressure distribution and drag. Integration of
equation (54) gives for the chordwise location on the wedge
of a given value of 4

% 3L, m/fz(n, B.0)d7

or

Lt or | et i (65)
The speed parameter = (M?*—1)/[(yv+1){#/c)}*, which was
used to present the results in part I, is related to 7 by the

following equation, derived with the aid of equations (18),
(26), (34), and (35):

t=bi=zan (66)

With these equations, the distribution of £ as a function of
z/c is readily determined. The integration of cquation (65)
is carried out by mechanical means using the same curve
previously employed to determine I,. To fair the resulting £
curve. in the vicinity of the shoulder, use is again made of
Guderley’s ansalytical findings, which show that in this

vicinity
1 r\¥¢
t~(3-%)
With the chordwise distribution of £ known, the pressure

distribution and drag can be found as described in part I
(see equations (7), (8), and (10)).7

CHARACTERISTICS CONSTRUCTION OVER REAR OF AIRFOIL

The characteristics in the 4, § plane (7>0) are given by

the following relation obtained from equations (20) and (26):
w 23/2 .

f =const. iT ik (67)

The corresponding directions of the Mach lines in the
generalized physical plane, as determined from_ this relation
and the transformation equations (54} and (57a), are

Y (26,
Aoy = @iy"

To the present order of approximation, therefore, the slope
of the Mach lines is independent of the loeal inelination 4.

(68)

It The analytical allowance for the singularity at the leading edge, mentioned {n conncetion
with equation (10b), is easily found with the ald of the asymptotie solution (38}
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This is consistent with the previous result that the stream-
lines must appear in the physical plane as horizontal straight
lines. As a consequence, the construction of the Mach net
over the rear of the airfoil is particularly simple in the
small-disturbance theory.

To aid in the construction, the equations for the character-
istics in the 7, & plane can be conveniently written in the form

b= u+’ =
8 __213;131:

The symbols 8, and 8, denote, respectively, the ordinates
at which the upgeing and downgoing characteristics through
a given point (7, 6) intersect the vertical axis. Elimination
of 8 between these equations gives

=533 (6,—86,)" (69)
which ean be substituted into equation (68) to obtain
day 46./3 |2 -
a(rfc)—i(éd—_ e) )

This is the basie relation for the characteristics construetion
in the physical plane.

The construction of the Mach net itself follows & simple
lattice-point procedure (cf. reference 44). By identifying
each Mach line with its appropriate velue of 6, or 6, the
value of dY/d(x/¢c) at the intersection of any two Mach lines
can easily be determined from equation (70) (or its graphical
equivalent). The basic construction necessary to locate an
unknown point ¢ from the location of two known points &
and b is then as indicated in figure 26. The construction

_____[zry e 3 dcx/c)] [atd}/;z

x/c
Frgrer 26.—Baslc construction for characteristics net.

proceeds rapidly since, as pointed out, variations in the
inclination of flow need not be considered in establishing the
direction of the Mach lines. Where desired, the value of
8 can be found from the relation

(71)

The corresponding value of 4 is given by equation (69).'®
Figure 27 shows a typical Mach net constructed by step-
wise application of the foregoing procedure. This net is for
the case of §,=1.6 (£,=0.921) and corresponds to the flow
field shown for the front of the airfoil in figure 3. The con-
struction is begun at the shoulder of the airfoil (xfe=1/2,
Y=0) with the values of 6, selected to provide approxi-
mately equal spacing between the Mach-lines of the expan-
sion fan. From the shoulder, the construetion is earried
outward to the sonic line and then inward to the rear surface
of the airfoil. The drawing of the Mach-line segments

adjoining the sonic line might appear at first to offer some

difficuity, since a linear average is obviously unreliable to
determine & mean inclination in this vieinity. Aectually, no
trouble is encountered from this source, since the point at
which each Mach line meets the sonie line is already known
from the hodograph solution for the subsonic field. The
construction of the last segment approaching the sonic line
thus reduces to a matter of simply connecting two known
points. The slope of the first segment leaving the sonic
line is found by either (a) multiplying the slope of the
approaching segment by —1, or (b) determining a mean
inclination based on the easily demonstrated fact that a
Mach Line in the vieinity of the sonie line behaves essentially
as a semicubical parabole.'® It is immaterial to the final
result which procedure is used. The identity of the Mach

lines reflected from the rear surface of the airfoil is determined

from equation (71) plus the boundary condition that at this
surface 8=—25,. As can be seen by comparing figures 3
and 27, only a relatively small portion of the sonic line
need be known to determine conditions on the rear of the
airfoil.

REMARKS ON ACCURACY OF SOLUTION

‘Quantitative statements with regard to the accuracy of
the present results are difficult to make. Fortunately, how-
ever, a check on the accuraey of the solution is available in
the work itself. This check derives from the faet that, in
the subsonic portion of the field, the ealculated location of
a given velocity in the physical plane should, theoretically,
be independent of the path of integration which is followed

in the hodograph. Thus, for example, the position of the

velocity #=0, 8=1, which defines the point of intersection
E of the shock wave and sonic line, should be the same
irrespective of whether it is found from equations (62) and
(63)

()E 21.,f ’?ﬁmo)dﬂﬂf VIFady  (72)

or from equation (64)

=2t

1 - -
i J wo.hdi

it In practice, the construction is actually carried out most easfly In & plane of Y/(28u)¥s
versus tfc with the slope of the Mach lines given by
AI¥IGRIE i3 \13
d(zfc) I\é“és
This allows & single graph of slope versus (§2—&.) to suffice for all values of #o. It glso pro-

vides somewhat more convenient proportions for the construction of the Mach net.
* The Iatter possibllity was pointed ont to the authors by Gottfrled Guderlsy.

(73}
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Actually, as was observed in connection with figure 2, the
results of the two determinations show a small discrepancy.
Such a result would be expected in any finite-difference
solution.

Discrepancies of the type noted can arise from two sources:
(1) numerical inaccuracies in the relaxation solution of the
finite-difference equations or in the transformation to the
physical plane; (2) inaccuracies caused by the fact that the
finite-difference equations themselves are not an exact
representation of the boundary-value problem for the
original partial differential equation. Experience with
various refinements in the ealculations indicates that the
discrepancies here are primarily of the latter origin. Early
computations with a coarse lattice and relatively crude
finite-difference equeations showed a considerable gap between
the shock wave and the end of the sonic line. Inereasing
refinements in the grading of the lattice and in the derivation
of certain of the finite-difference equations gave progressive
improvement in reducing this gap. This improvement came
about primarily as a resuit of progressive reduction in the
value of the integral I, the other integrals in equations (72)
and (73) being relatively unaffected by the refinements in
the calculations. Indications are that, in the results which

_are still somewhat too large.

were taken as final, the values of [¥;(7,8,)| and hence of I,
This means (see equation
(57b)) that the ordinates of the shock wave and sonic line
are probably somewhat smaller then they should be. The
same is probably true, in general, of the corresponding values

of [zfe]. Calculations of the chordwise distribution of 7 on

the surface of the airfoil are, however, considerably more

precise, since the errors in the two integrals in equation (65)

tend to compensate. The refinements in the computations

were, in fact, carried to the point where further betterment

caused only negligible change in the pressure distribution and

over-all drag. Further evidence of the accuracy of the

results in this regard is provided by the ease with which

the computed values fair into the results of Guderley and

Yoshihara at £==0 and into the analyticel curves which are

available when the bow wave is attached and the flow is

completely supersonic (see figs. 5 end 7).

AMES AERONATTICAL LABORATORY,
NartioNaL ApvisorY COMMITTEE FOR AERONAUTICS,
Morrert F1ELD, Cartr., Oct. 8, 1961.

APPENDIX

EXACT RELATIONS FOR SLOPE OF DRAG CURVE
AT A FREE-STREAM MACH NUMBER OF 1

In part I of this report, exact relations are given for the
stope of the curve of drag coefficient versus free-stream Mach
pumber at & free-stream Mach number of 1. These rela-
tions are based on the fact thaf at the sonic flight condition
the local Mach number 3f at the surface of an airfoil is
stationary with respect to veriations in the free-stream Mach
number M,—that is, (dM/dA,)x,.;=0. The details of
the derivation are given in the following paragraphs. The re-
sults are not restricted to a double-wedge section but are
applicable to the zero-lift drag of a symmetrical profile of
any shape.

The general equation for the pressure coefficient, valid for
any Mach number and thickness ratio, can be written

c, PPoPPoXQtszo 1

Al
o i Pe/ ol Cu (41)

where p is the static pressure at an arbitrary point on the air~
foil, p, and ¢, are the static and dynamic pressures at the
point on the airfoil at which =1, and p, and ¢, are the
static and dynamic pressures in the free stream. When
M,=1, conditions in the free stream and at the sonic point
are obviously equal (Poy, } so that

-1=P¥y°-1f qﬂy°-1= Qtu'.-:

Cram=H ()]

Differentiation of equation (Al) with respect to M, then
gives for the rate of change of the pressure coefficient at
M,=1

(A2)

£, A0 L. -

It is now necessary to evaluate the three derivatives on the
right-hand side of this equation.

If there are no shock waves present on the surface of the
airfoil, the ratio pjp, can be expressed solely in terms of the
local Mach number by an isentropie equation of the form

P _ran
o f(AD)

where the exact nature of the function f(3f) is immaterial in
the present application. From this equation and from the
known fact that (d34;d3,), _,=0, it follows at once that

d(p/ps) , dM
i L, =F@D (dM

If there are shock waves present on the airfoil, the argument
is slightly more involved, but the same result applies.
Equafion (A4) states, in effect, that as the free-stream Mach
number varies from unity the entire pressure distribution on
the surface of the airfoil varies in direct proportion to the
pressure at the sonic point.

The derivative [d(p./py)/d},]u,=1. which defines the rela-
tive variation between the static pressures in the free stream
and at the sonic point, can be found by first expressing the
ratio p,/p, in terms of the freestream Mach number M,.
The necessary expression can be obtained either from the

—0 (A4)
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equations for isentropic flow alone (M,< 1, no shock wave

ahead of the airfoil) or from these equations plus the equa- .

tions for the normal shock wave (Af,>1, detached wave
ahead of airfoil). In either case, if the expression is expanded

about M,=1 in terms of ascending powers of (Af,2—1), the
result is
P15 (M2—1)+0[0M— 1Y
" v+
Differentiation of this equation then gives
d(?a/l’*) — 27 _ o (A.5)

T dM, |1 yF1

The derivative [d(g./g,)/dM ]a,~1, which defines the rele-

tive variation between the dynamlc pressures in the free
stream and at the sonic point, can be found by expressing
¢4/, in terms of known quantities. The necessary relation

is given by
ﬁ=(&) M2
@x  \Px

from which it follows that

d(go/¢4) d(po/p.) _2
dM, -l‘[ dM, ]M-1+ =¥

The findings of equations (A4), (A5), and (A6) can now be
substituted into the previous equation (A3). The result is
the following important relation for the rate of change of the
pressure coefficient at the sonic flight speed:

(46)

(7). 7T 5T Craem (A7)

This relation is exact within the limitations of the inviscid
theory and is applicable to an airfoil of any shape and
thickness ratio.

The drag coeflicient of the front portion of any symmetrical
airfoil at zero Iift can be written

G0
— 2 i
C‘f‘f _arg &4 (E)
2

where the integration is carried out over the surface forward
of the position of muaximum thickness. Differentiation of
this equation with respect to Af, and substitution from
equation (A7) gives, after integration,

de,
f
(d—ﬂfz)u.q y+1 ( ) 'y+1( ‘f)M.-:

Similar reasoning gives for the rear portion of the airfoil

de,, 4 [t 2
(dM') PV | (E)—-y—}-l (c‘r)M.-l (A9)

It follows that for the complete nirfoil

dcd
e dM,) s

(A8)

2

m (c“)M,-l (A].O)
It is apparent from the foregoing derivation that the term
proportional to the drag coefficient in each of these equations
appears as a consequence of the relative variation betwecen
the dynamic pressures in the free stream and at the sonic
point. The term proportional to /e in equations (A8) and
(A9) is a result of the relative variation between the corre-
sponding static pressures.
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